A huge part of infrastructure development work upfront is the feasibility study. What exactly goes into a full feasibility study and why is it so important? This article aims to explain that simply and more accessibly to people outside the industry. We’ll focus on the feasibility study rather than any documentation on projects generated prior to that (sometimes called pre-Feasibility Study – which could be considered a ‘lite’ version).
The feasibility study is like a professional evaluation of a business plan. For any infrastructure project, this is a comprehensive look into all the practical, legal, technical and commercial aspects of the project. Often, it will include social and environmental dimensions of the project in order to ensure that the lenders (ie. financial institutions providing debt to the project) is satisfied. In markets where there is significant social and environmental activism, the lenders are also on the receiving end of hate-mail, harassment and boycotts. Major project finance lenders internationally have therefore got together to be involved in The Equator Principles – a risk management framework that banks sign up to abide in assessing the environment, social risks involved in projects.
What then constitutes environment and social risks?
Infrastructure projects are physical, and will almost always require clearing of a piece of land to allow construction to take place. This would mean either resettling villages, people, farms, or redeveloping urban spaces, or even clearing swathe of rainforest. In cases of large hydropower dams, it will involve spaces not only for construction of the dam but also planned floodplains which can include multiple villages, broad swathe of forests. All of these impacts on human lives, biodiversity, alters natural landscapes.
Of course, the banks, developers, and builders care about people and rainforests. But beyond that, they are concerned about being harassed, haunted by NGOs, activist organisations trying to run them down reputationally for having been involved in projects that destroyed natural habitats for endangered species, upsetting livelihoods. These forms the environment and social risks; and the feasibility study tend to cover aspects of the social and environmental impact assessment, as well as to propose means to mitigate. Through that, the developers of the project also forms an idea how much resources they might need to expend to support resettlement, to help rebuild livelihoods destroyed.
How about practical and technical risks?
The feasibility study also goes into the technical and practical aspects of the project, including studying the possible technologies to deploy, the actual site conditions: whether the land can accommodate the infrastructure, whether there is actually sufficient demand for that infrastructure, and if the infrastructure has everything needed to service that demand – this could take the form of water supply pipe network, or an inter-connector to the national grid for a power plant.
The study needs to ensure that the proposed technical solution is able to deal with the problem statement at hand. For example, if we are using incineration for the waste, then we have to ensure that the waste stream is not too moist. If the waste is wet, the incineration system may not perform properly, which leads to potential technical breakdowns or stoppage.
And not forgetting the legal and commercial risks?
At the end of the day, the project will have to comply with the law of the land, and often, there will be a lot of permitting, licensing, government approvals that are needed for various components of the project. The feasibility study will investigate all of these and the developers will also do their best to make sure the requisite approvals and permits are obtain in advanced even often in parallel with the feasibility study just to make sure that the project is progressing in a timely fashion. These documentation will often be studied alongside the feasibility studies by the lenders.
Lots of parameters, and results from various aspects of the feasibility study would be captured into the financial model that is used to work out whether the project is commercially viable – that is, the total revenues/payments expected for the lifetime of the project is able to pay for its total cost over its lifetime. Governments may also undertake an economic cost-benefit analysis, to see if the total economic benefit of the infrastructure project is able to cover the total cost to society (more on this from a previous article I’ve written).
At the end of the day, flagging out, assessing and then measuring these risks enables the developers, lenders, and the government to have a better picture of how viable the project really is, hence its feasibility – from the various risks perspective as well as the resourcing that can be availed to the project. Doing proper feasibility studies can also help government better plan areas surrounding infrastructure, whether it is to mitigate some of the impacts of the infrastructure, but also to see if developments around the infrastructure can help improve its feasibility (eg. a larger substation might have to be built in the area to be able to accommodate a large utility scale solar park which would not have been able to feed power into the national grid).
This article is part of a series I’m working on to make topics in infrastructure a little more accessible to students and people from outside the industry who might want to get involved.