Cutting subsidies

So having ranted incorrectly about energy subsidies, I saw this article about Malaysia and was reminded of this set of principles I suggested to one of the officials at the Single Buyer of Peninsular Malaysia while working with them on a project. These are ideas on how to move towards a regime where subsidies are reduced and does not apply to everyone:

1. Make them transparent: Start by making clear where there is a subsidy; even when there is a blanket subsidy, make sure that the amount of subsidy is clearly shown to those receiving the subsidy, and that the burden of the subsidy is properly attributed, reported, even publicly. Where price controls are used, the implicit subsidy needs to be made explicit.

2. Share a cross-section of the beneficiaries: Often, fuel subsidies are meant to help manage the cost of living for the lower income. But when it is implemented through price controls or blanket subsidies, it disproportionately benefits the largest energy users. By publicising who are the beneficiaries of the subsidy and how much who gets, you can start considering how to reduce the subsidy for select groups of beneficiary that will be impacted the least.

3. Reduce subsidy for beneficiaries not aligned with policy intents: unless the state policy intention is to benefit the fossil fuel industry, there are always some groups benefiting from a blanket subsidy whose profile doesn’t align with the target group you are trying to help.

4. Keep the subsidy only for groups targeted: once the policy intents are clearer and there is social consensus of who the target groups should be, the subsidies can be pared back to be given only to those who need them. This means that subsidies need to shift from producer-side towards consumer-side. This should be aided by improvements in technology, government data-collection, and new channels for disbursing benefits.

The truth is that economics of renewables have improved and could match fossil energy in some cases. Cutting subsidies for fossil fuel will not just help reduce the reliance on them but free up more government resources to accelerate the transition. We should not allow subsidies to stand in the way of the transition.

Energy subsidies

I don’t really remember the last time I dealt with the topic of subsidies. There are huge transfers that takes place in the economy as a result of government interventions through a combination of taxes and subsidies. It is hard to see what the real effects are because the result is always nett of a combination of different forces and programmes. As a result, it is hard to see whether the end result was intentional or not. Often, the end result can be intentional but brought about through a combination of transfers or policies with differing stated intents.

Take for example the whole issue of fuel and energy subsidies. There are explicit and implicit subsidies and they are applied at different levels, to different parts of the value chain, captured by different parties. Of course, the result is to some extent lower cost of energy, but it is also more energy used than otherwise would be. Well, why would you favour wasting energy? Often, it’s because it can help to divert perhaps certain industrial activities that could have downstream impacts such as helping to alleviate poverty, create employment, strengthen social cohesiveness and the list goes on.

After a while, you realised that in the sphere of politics and governance, economics only holds to a certain extent. And competition often can be defined within a single dimension but actually practised over that. What this means is that if you think you’re working hard for school grades, you’d be outcompeted by someone who recognizes that his grades mean little if it is not directed towards getting to a good school or a good job. There is always a greater arena that you are actually competing within.

What this means for renewable energy is that they are not just competing with fossil fuel in terms of adoption and capital for deployment but also consumption and subsidies. Of course there is lots of subsidies going around – for example, for hydrogen. The question is whether it is worthwhile pouring subsidy into that or a more mature energy vector that has the potential to decarbonise (for example, biomethane). However, there are limitations to biomethane or bioenergy because of feedstock limitations, because of the dispersed nature of the feedstock, and the difficulties associated with deployment.

Well, there are also budget limits and land limits. It is strange how people prefer to invest in areas that have more unknowns and uncertainties rather than areas where limits are more ‘known’, but the market could still be sizable. In Australia especially, I think there is incredible upside to taking the long-term view in things because it is a market where sensibilities do tend to eventually prevail.

Originally the intent was to rant about fossil energy subsidies but look where that got me.

Single pivot point

To make a change, we need a single pivot point each time. The pivot point is where things are fixed in place and do not change, and all the other changes hinge on it. And then when we make the next change, we can have another pivot point. But with any one change, we need to select a point of invariance to ensure some kind of order for the change.

In our climate transition today, too many people are trying to change things without a pivot point, thinking that the whole world has to transform. Determining what can be kept constant first is probably a good way to use consensus to drive actions. Then you’ll begin to realise what you are trying to keep the same can have far reaching consequences. For example, if you want to keep energy demand constant and start switching out existing demand into renewables, then you’re making it difficult for economic activities to expand. If you want to keep energy cost constant, then you risk keeping things to status quo and banishing adoption of costlier but greener technologies.

Laying out the trade-offs matter but one can consider how we fix certain parameters and move others first before coming back to revisit these. Take energy costs for example; given the cost of living issues and challenges, governments might want to focus on expanding proven, existing low cost green energy sources and pushing through all manner of regulations, and coordination necessary. Capture of landfill gas to be upgraded into biomethane and upgrading the biogas produced in wastewater treatment plants are low-cost sources of renewable gas that can be plugged into the existing system to displace fossil fuels. Malabar’s biomethane injection plant has just received the Greenpower certification and is the first biomethane plant in Australia to do so, ushering in what we hope to see as an era of using market mechanisms to drive renewable gas and fuel growth as it had done so for renewable electricity in the past decade in Australia.

Some may argue that prolongs the life of fossil infrastructure but we are calling them fossil infrastructure only because they are majority driven by fossil fuels as a result of legacy. One day, those infrastructure could be 100% driving renewable fuels.

Exploring sustainability

I first learnt about Hannah Ritchie‘s book, Not the end of the world, from Bill Gates. Guardian recently published another review of it as the book had just come into the market.

As Bill Gates pointed out, the interesting perspective that Hannah brings is that humans have not quite achieved the notion of ‘sustainability before. The UN notion of sustainability is “meeting the needs of the present without compromising the ability of future generations to meet their own needs”. We were not ‘more sustainable’ in the past as living standards were not great and life was pretty savage; ie. the needs of ‘the present’ wasn’t achieved in the past.

In a sense, it was as though nature had been too harsh to us and we somehow tried to survive that – mostly by ‘conquering’ and ‘reclaiming’ nature. Of course, that somehow begins to push the frontier of the planetary boundaries, and we end up breaching some of them. So the result is that the future needs become somewhat compromised.

Another important aspect of Hannah’s contribution to the book is to encourage people to look into the science and the facts. There had been so much bad press about palm oil and a very sustained assault by Western media on the crop that the productivity of the crop was overlooked. Turning to oilseed alternatives could result in more, rather than less deforestation and hence environmental destruction. Agriculture in the modern times for most part is more about taste and preferences as well as the sway that narratives have – as opposed to optimising agriculture for environment and the world.

Ultimately, we realise from Hannah’s fact-based approach that a lot of the challenges and problems do already have some kind of solution. It is all about adoption, and integrating new narratives in the way we live, and consider what is success for ourselves. Dietary choices are largely a matter of culture and what diet people aspire towards. People’s preferences can be shaped (and hence economics’ attempt at distinguishing exogenous variables from endogenous ones are somewhat moot).

For people to be more aware of the costs, and the challenges of the coordination problem, they must begin from this very fact-based approach that Hannah is leveraging in her optimistic storytelling about the history of human development. We may be struggling towards the solutions that we know (eg. putting a price on carbon and making people pay for it), but at the very least we can agree that this is how we need to move forward with and be aware of the costs and consequences. We need to get people to the bargaining table and work out who has how much to gain or lose. Without creating the transparency and acknowledging the financial, political costs, we end up being caught up in false arguments about technical solutions.

EV charging incentives

For a long time, EV charging infrastructure has been seen as something in the domain of public goods and should be driven by the government. The challenge on the government side is the question of whether it makes sense for them to invest ahead of EV adoption. Investors are nervous about it because EV chargers seem to them like something, which can pop up pretty much anywhere, and there’s no ‘moat’ to support stable revenues even if they serve as an infrastructure practically. Without proper government-regulated structure, it is difficult for investors to put capital into infrastructure in a place where there’s going to be limited utilisation.

Contrast this with petrol kiosk franchises – they are well-established and have demonstrable cash flow, with strong support from the oil & gas companies backing them. Electricity companies are sometimes backing EV charging point networks in order to increase electricity retail but the truth is that electricity distribution works on an entirely different business model from fuel distribution. A lot of investors believe that the petrol kiosks will themselves be the best location for very fast or ultra-fast chargers (usually 10-20 minutes for a full charge). The other fast chargers (1.5-4 hours for a full charge) will likely be in destinations like shopping malls or other commercial buildings.

Yet EV charging infrastructure is so important as a basis to increase EV uptake which the energy transition desperately needs. Electrification of energy needs from transport enables an easier decarbonisation as we can focus on renewable energy in the power sector while transport and other sectors just have to focus on electrification (which of course, can be quite a pain for some sectors – that’s for another day). So how do we increase and improve EV charging infrastructure? Where can we align the incentives? What role should the government play, if at all? And what if it becomes an extremely profitable business down the line?

Pathway to Hydrogen

I keep thinking about the role hydrogen would play in the netzero energy system. It is important because most specialists in the field think it will be incredibly important. But I’m afraid some of them think of the importance not from an energy or thermodynamics perspective but from a technological, socio-economic perspective. I think that is misguided for something that is so nascent and imature.

The solar and battery learning curves cannot be used to project what happens to hydrogen because it is fundamentally a more complex type of project. A lot less plug-and-play compared to solar panels or batteries. For solar panels, the technology takes in light and transform it into power, which in essence is the flow of electrons. There is of course the issue of DC power versus AC power but the inverters will deal with that translation; and you can plug directly to existing electricity grids. Of course, when you have a lot of them the grid must start shifting but at least you get a shot at getting started. And after that you’ve got batteries coming in, again almost ready to work with the existing electrical infrastructure.

Green hydrogen production integrates with the electricity system fine as well; it takes in power, feeds the electrolyser which separates pure water into oxygen and hydrogen, storing away the gas as it is being produced. However, the most valuable output in the process, the hydrogen, needs to be properly stored and transported to where it is needed. And all of these infrastructure do not yet exists! The largest part of the revenue generation problem has not been sorted!

This is why it is so difficult to get hydrogen started, and so expensive to do so even when the technology seem more and more established. The challenge is that a lot of that infrastructure would also serve some of the current fossil gas interests. There are issues of couse with the risks of interest conflicts when the fossil industry push for hydrogen.

The fact that hydrogen is not so plug-and-play to our current system means more evolution is needed before we are ready. Instead of putting direct incentives into hydrogen production, we should be using our resources to solve the problems along the journey to the hydrogen future. A lot of these problems involves collective action, coordination of choices and displacement of swarthe of economic activities that requires proper thought about restructuring.

There is really much more work to do than administering incentives. And this is definitely not an area the government can easily rely on market incentives to accomplish.

Ordering the transition

There is some kind of rational order to the energy transition. It depends on the maturity of the system, the current technologies deployed, the infrastructure in place, and also our views on the technologies ahead. This order will not occur naturally, nor will the economics of it follow naturally. Instead, it is an approach that requires coordination across the energy system, regulatory framework, and the markets to ensure that order proceeds as it should. There is no single right answer, which means there can be some variation but by and large, there are clearly right directions to move forward on.

It is critical to sharply focus on the objective of decarbonisation and organise other matters around it first. Presently, most of the global discussions, and the market narratives are clouded by issues around cost concerns, job losses, stranded assets and lots of doom and gloom around those. Worrying about them is putting the cart before the horse because we need to properly envision a future before we decide whether the sacrifices are worth and how to deal with those secondary problems derived from them. After all, you don’t choose your destination based on the public transport time table.

If for example we want to look at the decarbonisation of power systems, there is first the displacement of fossil generation with wind and solar. So wind and solar must first be installed into the system and ‘traditional renewable power’ such as hydropower and even bioenergy boosted. As battery technologies are not rolling out as quickly, hydropower and even biogas plants can and should help with some of the smoothing of supply. Yet if they are not sufficient, batteries must be put into the system to enhance the reliability and reduce intermittency so that renewable power is able to displace fossil generation.

And only then, would the power system be able to start supporting electrification of other industries as a route to decarbonise. There is no point thinking that electrification is a route to decarbonisation if the power system itself is loaded with coal and gas plants, and increased demand is continually used to justify the continued fossil presence. And then only when the power system is properly decarbonised should we start considering and pushing for green hydrogen. Otherwise, having our renewable electricity capacities all caught up in green hydrogen production is definitely not a great idea for the industries looking at electrification to decarbonise – you’re pushing up the electricity cost on both sides, and then you end up complaining that green hydrogen is not cost-competitive.

If we believe that we want to pursue a route of hydrogen production that is based on highly efficient electrolysers then we may only be able to do so when batteries are really cheap. This is because highly efficient electrolysers can only have their costs justified through high utilisation. Yet renewable electricity is expensive when they are scarce which is probably the case for a system full of solar at night, so if you want to keep the electrolysers going 24/7, you need batteries to keep pushing electrons through them. Highly efficient electrolysers, combined with lots of batteries for maintaining high utilisation is a great formula for extremely expensive green hydrogen. Cheap but inefficient electrolysers might actually end up doing the work of pushing down cost of hydrogen earlier (see some ideas here).

Now all that only helps with the production cost of green hydrogen; there are other issues and cost barriers which needs to be overcome. More on them in my next post. But what I’m trying to show here is that there is a rational, orderly way to approach the problem of decarbonising our systems. And the way to consider it is not to load up the emissions problem with all of the other considerations upfront. Rather, we organise ourselves better by thinking first about the best route to decarbonise based on carbon intensity, then we identify the costs, figure out the trade-offs and see what is worth sacrificing.

Transition fuels III

I’ve written about hydrogen (here, here and here) before and I would like to write more about it. Hydrogen is fascinating. It is a sole proton with an electron around it. Well, that’s the element, but it typically doesn’t exist in that form. Instead, it exists primarily as 2 protons bound together by a covalent bond supported by the existence of the 2 electrons sharing their electron orbitals within the covalent bond cloud.

Many people today believe that hydrogen is one of the fuels that the world will eventually transition to in the net zero world. This is one of the main reasons people are excited about hydrogen projects and hydrogen production (‘this is the future’). Much of that is grounded on the elusive quest to find some monolithic solution for the carbon conundrum. Not that the world will universally converge upon a single solution but that all solutions that are ultimately low carbon will stem from hydrogen or find its linkages to it somewhat.

But is hydrogen the future? Sure, hydrogen cars are really quick and easy to refuel. And indeed, a lot of industrial heating process currently running on natural gas can be supported by combusting hydrogen. And even better, hydrogen combustion merely produces steam, a byproduct that can be used for other purposes. There’s something beautiful about the non-toxicity and purity of the byproduct, the elegance of the molecule and perhaps the fact hydrogen is used in different processes in petrochemical industry. Hydrogen will be part of the future, but will it be ‘the future’? I think a lot more other supporting elements needs to come in place. An orderly energy transition is about proper sequencing and targeted shifts rather than trying to leapfrog or take potshots.

Over the past decades of stability, we’ve allowed the whole idea of economic growth and making money to take centerstage in the lives of the most productive people in the world. With the climate challenge, it is getting important to channel that resource and capability towards the energy transition. I’ll write more on my vision for an orderly transition from here. And if we all can align on the mission, we can start evaluating and piecing together various different routes and work through breaking the barriers and blockers. More on that soon.

Transition fuels II

Bioenergy, in the form of biogas or liquid biofuels finds themselves in the nexus of many things. And as it turns out, nexus of unrelated fields tends to languish in obscurity for far too long because no one in powerful places is willing to take hold of it and champion it.

And no bioenergy isn’t the kind of thing that is shown in The Matrix. One Uber driver who picked me up on the way to a bioenergy conference in Queensland thought that was what I was referring to.

Typically, bioenergy takes some kind of organic material and makes uses of various processes (synthetic or biological) to convert them into hydrocarbons that are chemically identical to fossil fuels. As it turns out, the way in which the earth cooks up all the historical organic matter into fossil fuels is not the only way in which organic matter can be converted into fuels. There are natural processes that can return these organic matter to precursors, which can allow us to derive the hydrocarbons we could use as fuels. These products are what we call biofuels and collectively, the use of organic matter within the contemporary carbon cycle (or short carbon cycle) to produce energy is known as bioenergy.

As much as these fuel and products are chemically identical to fossil fuels and can utilise all of the oil & gas infrastructure we have built over the past century, their production is so radically different from fossil fuel processes that the oil & gas companies seem to struggle with them. Or at least they find it hard to wean themselves off traditional production and capture new demands using bioenergy. On the other hand, the smaller, emerging players who wants to start bioenergy businesses find themselves shut out of the larger infrastructure base that is used to distribute these fuels because they are firmly locked within the fossil fuel ecosystem. And fossil fuel is just way more competitive if it’s about economics. Regulation does not see a clear path for bioenergy to take hold because they perceive it as a fringe activity, and the fossil lobby could easily quashes those thoughts from emerging. Across the world, bioenergy only took hold because regulation stepped in with blending mandates or direct subsidies to encourage the integration of bioenergy into the existing fossil energy system.

So while there are huge advantages in bringing in bioenergy because it helps prevent those oil & gas infrastructure assets from being stranded, they find themselves in the crosshairs of those parties whom they could help partly because they are in the ‘green camp’. On the other hand, the green camp doesn’t want to adopt and champion the bioenergy cause as much as wind and solar because bioenergy could potentially cement the position of the big oil. In markets where regulations require blending, oil & gas players have gotten involved in the bioenergy value chain, probably reluctantly and not without grumbling. They just try to meet the basic standards while taking all the political credit for having made the change.

There is also another group that bioenergy serves, which ends up becoming their enemies as well. They are the agrifood processing facilities or other food value chain players generating lots of organic waste. In countries where disposal of these organic wastes is well-regulated, anaerobic digestion plants are used for waste treatment. The biogas produced were seen more as a waste gas to be flared than an energy source to be harnessed. To harness these energy, more investments have to be made on the part of these distributed networks of players who might not have the capital readily available. They may not have the decarbonization ambitions either. There are also concerns that once we start harnessing energy from these, there will be more demand for organic waste and even agricultural residues which were traditionally used as substitutes for organic fertilisers. At the end of the day, getting the agrifood value chain involved in bioenergy seemed to be more like a distraction from their core business without contributing significantly to their business. In fact, there is increasing opposition to bioenergy that is driven by the view that it would pit energy against food production, which would be detrimental to a more fundamental need of mankind.

Hence, even though I would argue bioenergy is the most important energy source to support the transition, while playing a significant role in the net-zero world, there’s still so much wanting in this space. There is still no clear space that is adopting and championing this enough to mainstream it.

We will really need to change the narrative on bioenergy. More on this soon.

Transition fuels

When Blunomy first started out as Enea Consulting in 2007, the world was not that different. We were burning lots of fossil fuels, except a lot more coal and oil. There was also less renewables then. Solar panels were incredibly expensive and people thought wind turbines were so clunky (and expensive for the amount of power it generates) it was not possible for the world to have more wind turbines than combustion turbines.

The period of 2000s saw the mainstreaming of liquefied natural gas (LNG) and gas was broadly touted as the transition fuel as the world cross from coal towards renewables. Emissions from combustion of gas was less than half that of power generation with coal, and gas power plants could fire up faster than coal power plants. Energy transition then was about fuel switching and the metric was more around carbon intensity per unit energy. Unfortunately, there was no regulations to push for shifts in this metric and so when the economics doesn’t line up, it simply was ignored. Coal power continued propagating in the world especially in the developing countries. Even in developed countries, coal plants were continuing to operate or even refurbished to extend their lifespans. Singapore’s Tembusu Multi-utilities complex which burns a mix of coal and other fuels, was commissioned as recent as 2013.

All these meant that as energy demand increased, the mainstreaming of gas especially through LNG was only serving incremental demand and not exactly displacing coal. Today, it gets lumped as ‘bad’ with coal and there are calls for it to be eliminated from the system. In many sense, people are considering gas no longer as a transition fuel but to be leapfrogged somewhat. The leapfrogging makes sense from a carbon intensity point of view. But by most counts, gas is a superior technology even to renewable power generation as gas power can still serve as baseload and is dispatchable unlike wind and solar which do not respond to the beck and call of power demand. Batteries help to overcome this but as long as the economics of renewables-plus-batteries is not superior to coal or gas, it will be a tough sell.

The reason for expansion of LNG was because of the superiority of gas in terms of technology, the way it matches our energy use, and the falling costs in the early 2000s. Projecting the way forward, this is unlikely to be true anymore as exploration in certain jurisdiction have slowed or ceased, existing gas fields are no longer as productive, and material costs have risen to counter the competitiveness. There is also a question of the new generation of engineers bothering to enter into this space if they perceive it as declining.

This is where bioenergy comes in and becomes positioned so awkwardly that it finds itself a little stuck. More on this soon.