In public finance, there are multiple approaches to determining how to use the public budget. There will always be the standard expenditures that will have to be costed in, the overheads to cover the public service.
Then there are past liabilities that will need to be paid for. But then, each time, the government can make a decision whether those liabilities are still worth their while to continue financing.
After which, we determine the infrastructure and other investments essential for development of the society. When it comes to investing into infrastructure, the government will definitely need to meet needs, but they might have to ask themselves what kind of social benefits are generated in order to work out whether the price tag for fulfilling those needs make sense.
This is the realm of externalities. And the reason we care about that is because the free market would not. If private benefits exceed private costs, then the free market will find its own means of fulfilling those needs. When there are externalities, the government has to step in. From a business point of view, where there are negative externalities, it is a revenue-opportunity for the government. And where there are positive externalities, the ruling political party can get some political mileage out of it.
Such is the interaction across politics and economics that is worth a bit more attention.
For a long time, EV charging infrastructure has been seen as something in the domain of public goods and should be driven by the government. The challenge on the government side is the question of whether it makes sense for them to invest ahead of EV adoption. Investors are nervous about it because EV chargers seem to them like something, which can pop up pretty much anywhere, and there’s no ‘moat’ to support stable revenues even if they serve as an infrastructure practically. Without proper government-regulated structure, it is difficult for investors to put capital into infrastructure in a place where there’s going to be limited utilisation.
Contrast this with petrol kiosk franchises – they are well-established and have demonstrable cash flow, with strong support from the oil & gas companies backing them. Electricity companies are sometimes backing EV charging point networks in order to increase electricity retail but the truth is that electricity distribution works on an entirely different business model from fuel distribution. A lot of investors believe that the petrol kiosks will themselves be the best location for very fast or ultra-fast chargers (usually 10-20 minutes for a full charge). The other fast chargers (1.5-4 hours for a full charge) will likely be in destinations like shopping malls or other commercial buildings.
Yet EV charging infrastructure is so important as a basis to increase EV uptake which the energy transition desperately needs. Electrification of energy needs from transport enables an easier decarbonisation as we can focus on renewable energy in the power sector while transport and other sectors just have to focus on electrification (which of course, can be quite a pain for some sectors – that’s for another day). So how do we increase and improve EV charging infrastructure? Where can we align the incentives? What role should the government play, if at all? And what if it becomes an extremely profitable business down the line?
When corporates purchase carbon credits and try to ‘offset’ their emissions, environmental groups would accuse them of greenwashing and to a certain extent, tokenism. Yet when Victoria state government bans gas in new homes from 2024, environmental groups were pleased and herald it as some degree or progress and victory.
It is easy to pass this off as a big move. Developers of new homes may have more planning restrictions. Those buying new homes will need to stop using gas. Gas demand growth from households will slow down but gas use in homes are a really tiny fraction of 17% contribution to the state’s emissions by the gas sector.
At the system level, Victoria’s grid emission factor in 2022 is actually such that it emits 4.6 times more carbon dioxide equivalent than combusting piped gas for an equivalent amount of energy. You can easily work that out by consulting the greenhouse emission factors published each year. Of course, I’m probably ignoring some of the emissions associated with the distribution part of things and also with fugitives. The reason for this big difference is the presence of coal-fired power plants on Victoria’s grid. In any case, all renewable energy injected into the grid from wind and solar will be used. Coal-fired power plants provide the baseload and gas-fired power plants usually absorb the additional load demand. What this means is that during the times (early morning or in the evenings) when you’re using electricity for heating or cooking in households, it is quite likely you’re consuming more gas fired power than solar power (whose generation peak in the mid-day).
There are questions on the efficiency of the whole process. Burning gas at power plants and converting them to electricity will result in some energy loss, and then using the electricity to convert it back to heat will mean a bit more losses (less than at the power plant of course); so heat applications for electricity isn’t all that efficient.
And then there is the question of energy bills. Whether you are consuming gas directly in the house or indirectly through electricity in the system, you are going to bear the cost of the gas that is consumed. In Australia, a large proportion of the cost of energy isn’t really in the energy itself but the share of cost that goes into infrastructure, especially that of distribution. Going full electric in households serves to help decarbonise the system only when the renewable electricity is supplied during the times when household’s demand peak. For solar, this is unlikely to be the case unless the household installs its own battery system to charge when solar generation is peak in mid-day. Batteries, additional distribution network assets to cater to peak renewable generation, are all infrastructure that will add to the cost of electricity.
So let us be honest about it: banning gas in residential use is unlikely to move the needle much in terms of decarbonisation in the electricity system right now. At least not all that much in Victoria. It is going to push the problem upstream where it can potentially be managed better. But a lot more actions will have to be taken. Would it improve indoor air quality for homes? Maybe, if your house is not properly ventilated but I doubt it is a very serious issue. Would it really reduce energy bills across the household? Quite unlikely. What it could accomplish is some degree of tokenism to pacify the groups of people who thinks it is a good idea.
Yet it is probably a setback for decarbonisation because we are narrowing ourselves to decarbonise by using a narrow set of technologies and forgetting about the ability to decarbonise gas through biomethane.
I thought of writing about methane. It is a curious molecule consisting of a single carbon atom surrounded by four hydrogen atoms around it which pretty strong bonds with the carbon atom. The entire molecule is relatively small and exists in gaseous form at room temperatures. It is naturally occurring and comes out of natural processes that involves anaerobic bacteria actions. It is a fuel that can be combusted to produce carbon dioxide and water vapour.
It also happens to be a greenhouse gas. Each methane molecule is thought to have 25 times more global warming potential than carbon dioxide. Natural gas is largely made up of it; hence it is a greenhouse gas by itself though combusting it will also produce carbon dioxide which itself is a greenhouse gas though with lower potential.
The focus on carbon emissions is a result of the recognition that we have spewed so much of this particular greenhouse into the atmosphere that it is having extreme effects on the global climate due to the warming potential. The world needs to move towards low-carbon and that means having activities that are emitting less carbon dioxide into the atmosphere. In general, fossil fuel based carbon holds the largest responsibility in anthropogenic carbon emissions.
Interestingly, you could produce methane through anaerobic biological process. And cows are known to release methane into the air because of the bacteria actions in their stomach. The dairy industry therefore becomes a rather larger emitter of greenhouse gas for this reason. That is where stuff gets a bit fuzzy when you’re counting global warming potential, anthropogenic emissions and so on.
So biomethane is the methane produced through anaerobic digestion of organic matter can be captured and used as a fuel. When combusted it likewise produces carbon dioxide and water. But this carbon dioxide belongs to the short carbon cycle due to its organic/plant heritage and hence is excused from what typical constitutes carbon emissions. Yet when biomethane leaks or is released into the air, the methane’s global warming potential is counted and the carbon-equivalent emissions actually forms part of the emissions from processes whenever biomethane is used. This ‘short cycle’ argument doesn’t seem to apply.
This may not seem very consistent and can potentially create a lot of confusion around the truly ‘green’ identity of biomethane. One could see how biomethane, or renewable natural gas as it is known in the US, is going to suffer from being conflated with fossil fuel natural gas.
Even as we see the levellised cost of solar coming down, and increasing penetration of renewable energy, the electricity coming to us in our grids are increasing in prices. At least it seems to be so in Australia. There’s a lot of cost associated with the transmission and distribution infrastructure that needs to be recovered – partly because the growth of intermittent renewables mean that the grid infrastructure will have to be expanded.
But it is not just that; there’s also more padding required in the margins of electricity retailers because the intermittency results in even more volatile electricity prices in the wholesale market. That means that if the retailers are still providing fixed price tariffs and long contracts to customers, they will have to manage their risks by putting higher profit margins into the retail packages.
There is a huge price to pay by the society to eventually enjoy more renewable energy. If we don’t adapt to the intermittency through more adding more flexible generation leveraging on demand response and integrating EV recharging networks into the network operation optimisation (ie. Vehicle-to-Grid systems), we can only expect higher bills. We had better accelerate the transition or we’re soon losing the patience of energy consumers.
The previous two posts are really just preparing me for this final one about returns on capital. We have talked about the aspirations of labour and that perhaps capital should be more like labour, where it is not just trying to get a return to multiply itself, but actually to look to more qualitative returns as well. But how would capital do that?
We see examples of this done using state capital. The government uses its capital to invest into public infrastructure, education or even public housing; all of these drives returns at broad economic and social levels. And this can generate more taxes in the future but the idea of the government isn’t to actually be able to generate more taxes in the future. Having more taxes is good because it can sustain the pace of these investments but the actual return is what the society reap in terms of better standards of living, greater knowledge in the people and so on.
Yet private capital holders are not exactly thinking this way. Private capital holders act as if most of what matters is that invested capital reaps more capital. And imagine if this was applied to the government, that it simply invests more so as to gain more taxes. It might end up investing in more coercive approaches to extracting more taxes. Or to just invest in areas that gives it more power.
If companies starts developing a vision of the future and of the world it wants to build, and define the returns on capital as what gains the world get in steps towards those vision, one could expect businesses to behave differently. In other words, we start investing the way we would want to be able to practice charity or giving effectively. We put our money where there can be most impact and action towards the future we want to see in the world. The returns come when we are able to step into the future that we had envision, not when the money flows back in. In most cases, if that future in our vision materialises, the monetary gains should come in to sustain that vision. If it doesn’t, then something is missing somewhere, and you either find another vision or path to invest into, or harness further resources needed to move towards that.