Natural gas seem to be the fossil fuel which was supposed to be a transition fuel that overstayed its welcome. In fact, it seem to have failed at its job at properly displacing coal and yet today, it is seen as a dirty fuel to be transited away from rather than towards.
That is actually a very anglo-saxon view of the energy transition and if you go around Asia, to some of the fast growing economies you’d realise that notion is somewhat deluded. Natural gas is still growing and providing more energy to more businesses, households and people not because of the gas lobby or some kind of oil & gas conspiracy but that plans laid down in the past to move towards gas are just cranking on and moving forward. Sure, things are not moving as fast as we would like them to, but it is incredibly challenging to keep trying to drive people off gas towards renewable electricity when we have not properly dealt with or created a realistic pathway out of coal power.
A premature transition out of gas, especially for currently non-electrified uses, could be expensive. And electrifying heavy industrial loads when a power system is still dominated by coal, is certainly emissions-blind.
As Bill Gates pointed out, the interesting perspective that Hannah brings is that humans have not quite achieved the notion of ‘sustainability before. The UN notion of sustainability is “meeting the needs of the present without compromising the ability of future generations to meet their own needs”. We were not ‘more sustainable’ in the past as living standards were not great and life was pretty savage; ie. the needs of ‘the present’ wasn’t achieved in the past.
In a sense, it was as though nature had been too harsh to us and we somehow tried to survive that – mostly by ‘conquering’ and ‘reclaiming’ nature. Of course, that somehow begins to push the frontier of the planetary boundaries, and we end up breaching some of them. So the result is that the future needs become somewhat compromised.
Another important aspect of Hannah’s contribution to the book is to encourage people to look into the science and the facts. There had been so much bad press about palm oil and a very sustained assault by Western media on the crop that the productivity of the crop was overlooked. Turning to oilseed alternatives could result in more, rather than less deforestation and hence environmental destruction. Agriculture in the modern times for most part is more about taste and preferences as well as the sway that narratives have – as opposed to optimising agriculture for environment and the world.
Ultimately, we realise from Hannah’s fact-based approach that a lot of the challenges and problems do already have some kind of solution. It is all about adoption, and integrating new narratives in the way we live, and consider what is success for ourselves. Dietary choices are largely a matter of culture and what diet people aspire towards. People’s preferences can be shaped (and hence economics’ attempt at distinguishing exogenous variables from endogenous ones are somewhat moot).
For people to be more aware of the costs, and the challenges of the coordination problem, they must begin from this very fact-based approach that Hannah is leveraging in her optimistic storytelling about the history of human development. We may be struggling towards the solutions that we know (eg. putting a price on carbon and making people pay for it), but at the very least we can agree that this is how we need to move forward with and be aware of the costs and consequences. We need to get people to the bargaining table and work out who has how much to gain or lose. Without creating the transparency and acknowledging the financial, political costs, we end up being caught up in false arguments about technical solutions.
Electrification is often easy in many cases. It is just about changing appliances. Of course, it is also about lifestyle and way of life. I personally still prefer to cook over a gas stove. But I won’t stop cooking without one; I’ve used various electric stoves before as well and didn’t face any major issues.
I’ve lived in house that had gas heating and also one with electrical heating. Regardless, the level of thermal comfort tends to be a trade-off between use of energy and insulation rather than necessarily the equipment for heating though the efficiency of the appliances would play a part. Going on to bigger things, there’s the electrification of transport. For most part, this can be based off just taking public trains or trams instead of driving. It can also involve using electric bikes. Of course finally, there’s the transition to electric cars.
None of these really do reduce emissions in and of themselves assuming no particular changes in energy efficiency of the basic fuel used. It is the energy source that matters. Electrification must be paired with switching power generation to renewable sources such as wind, solar, hydropower and so on. It is meaningless to have electric vehicles on the road and heating of homes with heat pumps when you are generating the power. The challenge of the energy transition is that many things are taking place together and people are not able to really keep track of how much emissions are going to be or might be. Therefore, the direction and rate of change is perhaps more significant to give a sense of how much change can or will happen.
Abatement of emissions through increasing power generation through renewable energy combined with electrification remains the simplest and most effective way to decarbonise our economies. However, the complexity lies in the fact that power prices affects the economy broadly and in many countries, they are subsidised at least for some sectors of the economy. By increasing the demand for power through electrification, the plans for subsidies for certain sectors might be affected. If supply is not increasing fast enough, power prices may increase in a way that reduces the competitiveness of other sectors and the economy as a whole. At the same time, there is also a risk that renewable power supply that is coming online is much more expensive, leading the overall electricity prices to increase anyways even if the supply is keeping up with demand.
Governments are afraid of adversely affecting the power prices as it has very broad sweeping economic consequences. Additionally, power transmission and distribution investments will also have to accelerate to cope with the increased demand and supply for power. Unlike the older set of infrastructure invested over time and much longer ago, we are looking at a huge ramp-up during a short period which means the infrastructure cost will have to be passed on to customers during an intense period of change. So while electrification combined with renewable power generation is the easiest pathway to decarbonise, there are systematic and political challenges around the distribution of the cost of energy transition to consider. Overall, the players who are electrifying some of the previous energy uses actually pass on parts of their cost of transition to the overall system as their participation in the market raises the cost of power for everyone.
For the typical electricity consumer, they would expect their share of the energy transition cost to be converting their load to be drawn from renewable energy sources. However, they now have to pay a share of the heightened infrastructure cost from the increased load, as well as the increased energy cost due to competition for renewable electricity. These complexities are slowing down a process that needs to happen much more quickly.
I’ve written about hydrogen (here, here and here) before and I would like to write more about it. Hydrogen is fascinating. It is a sole proton with an electron around it. Well, that’s the element, but it typically doesn’t exist in that form. Instead, it exists primarily as 2 protons bound together by a covalent bond supported by the existence of the 2 electrons sharing their electron orbitals within the covalent bond cloud.
Many people today believe that hydrogen is one of the fuels that the world will eventually transition to in the net zero world. This is one of the main reasons people are excited about hydrogen projects and hydrogen production (‘this is the future’). Much of that is grounded on the elusive quest to find some monolithic solution for the carbon conundrum. Not that the world will universally converge upon a single solution but that all solutions that are ultimately low carbon will stem from hydrogen or find its linkages to it somewhat.
But is hydrogen the future? Sure, hydrogen cars are really quick and easy to refuel. And indeed, a lot of industrial heating process currently running on natural gas can be supported by combusting hydrogen. And even better, hydrogen combustion merely produces steam, a byproduct that can be used for other purposes. There’s something beautiful about the non-toxicity and purity of the byproduct, the elegance of the molecule and perhaps the fact hydrogen is used in different processes in petrochemical industry. Hydrogen will be part of the future, but will it be ‘the future’? I think a lot more other supporting elements needs to come in place. An orderly energy transition is about proper sequencing and targeted shifts rather than trying to leapfrog or take potshots.
Over the past decades of stability, we’ve allowed the whole idea of economic growth and making money to take centerstage in the lives of the most productive people in the world. With the climate challenge, it is getting important to channel that resource and capability towards the energy transition. I’ll write more on my vision for an orderly transition from here. And if we all can align on the mission, we can start evaluating and piecing together various different routes and work through breaking the barriers and blockers. More on that soon.
Bioenergy, in the form of biogas or liquid biofuels finds themselves in the nexus of many things. And as it turns out, nexus of unrelated fields tends to languish in obscurity for far too long because no one in powerful places is willing to take hold of it and champion it.
And no bioenergy isn’t the kind of thing that is shown in The Matrix. One Uber driver who picked me up on the way to a bioenergy conference in Queensland thought that was what I was referring to.
Typically, bioenergy takes some kind of organic material and makes uses of various processes (synthetic or biological) to convert them into hydrocarbons that are chemically identical to fossil fuels. As it turns out, the way in which the earth cooks up all the historical organic matter into fossil fuels is not the only way in which organic matter can be converted into fuels. There are natural processes that can return these organic matter to precursors, which can allow us to derive the hydrocarbons we could use as fuels. These products are what we call biofuels and collectively, the use of organic matter within the contemporary carbon cycle (or short carbon cycle) to produce energy is known as bioenergy.
As much as these fuel and products are chemically identical to fossil fuels and can utilise all of the oil & gas infrastructure we have built over the past century, their production is so radically different from fossil fuel processes that the oil & gas companies seem to struggle with them. Or at least they find it hard to wean themselves off traditional production and capture new demands using bioenergy. On the other hand, the smaller, emerging players who wants to start bioenergy businesses find themselves shut out of the larger infrastructure base that is used to distribute these fuels because they are firmly locked within the fossil fuel ecosystem. And fossil fuel is just way more competitive if it’s about economics. Regulation does not see a clear path for bioenergy to take hold because they perceive it as a fringe activity, and the fossil lobby could easily quashes those thoughts from emerging. Across the world, bioenergy only took hold because regulation stepped in with blending mandates or direct subsidies to encourage the integration of bioenergy into the existing fossil energy system.
So while there are huge advantages in bringing in bioenergy because it helps prevent those oil & gas infrastructure assets from being stranded, they find themselves in the crosshairs of those parties whom they could help partly because they are in the ‘green camp’. On the other hand, the green camp doesn’t want to adopt and champion the bioenergy cause as much as wind and solar because bioenergy could potentially cement the position of the big oil. In markets where regulations require blending, oil & gas players have gotten involved in the bioenergy value chain, probably reluctantly and not without grumbling. They just try to meet the basic standards while taking all the political credit for having made the change.
There is also another group that bioenergy serves, which ends up becoming their enemies as well. They are the agrifood processing facilities or other food value chain players generating lots of organic waste. In countries where disposal of these organic wastes is well-regulated, anaerobic digestion plants are used for waste treatment. The biogas produced were seen more as a waste gas to be flared than an energy source to be harnessed. To harness these energy, more investments have to be made on the part of these distributed networks of players who might not have the capital readily available. They may not have the decarbonization ambitions either. There are also concerns that once we start harnessing energy from these, there will be more demand for organic waste and even agricultural residues which were traditionally used as substitutes for organic fertilisers. At the end of the day, getting the agrifood value chain involved in bioenergy seemed to be more like a distraction from their core business without contributing significantly to their business. In fact, there is increasing opposition to bioenergy that is driven by the view that it would pit energy against food production, which would be detrimental to a more fundamental need of mankind.
Hence, even though I would argue bioenergy is the most important energy source to support the transition, while playing a significant role in the net-zero world, there’s still so much wanting in this space. There is still no clear space that is adopting and championing this enough to mainstream it.
We will really need to change the narrative on bioenergy. More on this soon.
When Blunomy first started out as Enea Consulting in 2007, the world was not that different. We were burning lots of fossil fuels, except a lot more coal and oil. There was also less renewables then. Solar panels were incredibly expensive and people thought wind turbines were so clunky (and expensive for the amount of power it generates) it was not possible for the world to have more wind turbines than combustion turbines.
The period of 2000s saw the mainstreaming of liquefied natural gas (LNG) and gas was broadly touted as the transition fuel as the world cross from coal towards renewables. Emissions from combustion of gas was less than half that of power generation with coal, and gas power plants could fire up faster than coal power plants. Energy transition then was about fuel switching and the metric was more around carbon intensity per unit energy. Unfortunately, there was no regulations to push for shifts in this metric and so when the economics doesn’t line up, it simply was ignored. Coal power continued propagating in the world especially in the developing countries. Even in developed countries, coal plants were continuing to operate or even refurbished to extend their lifespans. Singapore’s Tembusu Multi-utilities complex which burns a mix of coal and other fuels, was commissioned as recent as 2013.
All these meant that as energy demand increased, the mainstreaming of gas especially through LNG was only serving incremental demand and not exactly displacing coal. Today, it gets lumped as ‘bad’ with coal and there are calls for it to be eliminated from the system. In many sense, people are considering gas no longer as a transition fuel but to be leapfrogged somewhat. The leapfrogging makes sense from a carbon intensity point of view. But by most counts, gas is a superior technology even to renewable power generation as gas power can still serve as baseload and is dispatchable unlike wind and solar which do not respond to the beck and call of power demand. Batteries help to overcome this but as long as the economics of renewables-plus-batteries is not superior to coal or gas, it will be a tough sell.
The reason for expansion of LNG was because of the superiority of gas in terms of technology, the way it matches our energy use, and the falling costs in the early 2000s. Projecting the way forward, this is unlikely to be true anymore as exploration in certain jurisdiction have slowed or ceased, existing gas fields are no longer as productive, and material costs have risen to counter the competitiveness. There is also a question of the new generation of engineers bothering to enter into this space if they perceive it as declining.
This is where bioenergy comes in and becomes positioned so awkwardly that it finds itself a little stuck. More on this soon.
There will be players who cannot electrify their processes, and they will need solutions. Most of them would be using natural gas running through the pipelines. And for them to decarbonize, they would need either a renewable form of natural gas, which is probably the most acceptable solution for them technically. For some of them, burning green hydrogen could potentially work as well, assuming they overcome the issues around the lower energy content of the hydrogen. Let’s consider again the drive to electrify. Using green hydrogen for these industries is equivalent to electrification because green hydrogen production is driven by renewable wind or solar power production. The notion is ultimately to shift the energy demand of these hard-to-abate industries back to the electricity grid, except through green hydrogen. Except, of course, the green hydrogen route is a very inefficient use of electricity because of poor conversion by electrolyzers and then coupled with the fact that more energy might be used to transport or store the hydrogen.
What I’m trying to point to here, is not that green hydrogen isn’t a viable solution – because in due course, with technological improvements, it definitely can and should be used. But in light of the electrification challenges I highlighted in part 1 (yesterday’s post), green hydrogen does not help alleviate the problem. It tends to complicate it and put even more stress on the electricity system when trying to green the grid. The mix of policy stances involving the heavy promotion of green hydrogen, the attempts to accelerate the reduction in gas use domestically, and setting aggressive renewable energy targets (really more like renewable electricity targets) for the grid emissions factor are all putting a lot of pressure on the electricity system while trying to keep electricity cost pressures under control.
Already mentioned in the earlier blog post is that natural gas resources can serve as part of the transition story. Now, there are concerns and worries about an addiction to fossil gas. After all, the economy might actually be addicted to it because it is a very lucrative export for Australia and so even as the country tries to reduce domestic use, it is unlikely to give it up as an export. And the fear is that the addiction would make it harder to decarbonise. This is why the other area for the government to direct its resources and develop policies that channel efforts in the right direction would be to promote biomethane production and displacement of fossil natural gas through the use of biomethane.
It is almost a no-brainer. Yet, there were concerns about the costs of biomethane while the more costly green hydrogen is being subsidised in all directions. There were further concerns about the limits of the resource potential of biomethane when the grid resources for green hydrogen production are even more scarce and expensive.
In providing my opinions, I have not given any figures but assumed that readers can find and discover for themselves the relative costs, and other challenges associated with how the overall policy mix and energy transition conversation is creating needless bottlenecks and distorting the orderliness of the energy transition. I suggest that we direct our efforts as an industry, economy, society and country in a more sensible, coherent, and directed manner to navigate the energy transition. The technically sensible approach is available and on the table, let’s set that as a destination first, and then slowly navigate the political minefield to get to it. This would likely produce better results than to be muddling through the technical solutions while trying to satisfy various political constituents and be none the wiser as to which destination we’re trying to get to.
Just an additional note to say that these entries are purely my personal opinions and do not reflect any views of my employers or any organisations I happen to be affiliated with.
The more I observe the energy transition in Australia, the more I realise that its attempts at balancing many different principles and ideas are at odds with achieving an orderly transition. Too often, we cast the energy transition as a technical or economics problem but more often, it’s a policy and political science problem. At the heart of the debate, is the age-old welfare economics issue around winners and losers. And with lobbying, power plays, risk of job losses, and a mix of various different studies, academic and commercial contributing to various perspectives, it can be incredibly confusing for policymakers.
Having worked on the side of government and alongside policy makers when I first started my career in Singapore, I thought that the volume of noise that exists in Australia around the energy transition is startling. I recalled that there were a lot more ‘no-brainer’ type of policy directions and being in the government was a lot more about trying to steer a large, heavy ship towards the destination that we can more or less agree on. In Australia, it almost feels like the policymakers are simultaneously being pulled in a hundred different directions at the same time and trying to achieve it all.
If, at this point, we are seeing that the policy direction is towards electrification, then the actual effort will have to be looking at what can green the grid and focus on that. So there’s been funding towards more solar and wind, as well as batteries to help balance the load in the system. The next big challenge is grid stability and network capacity. This will require extremely large investments and infrastructure build-up that will take time. This means we cannot electrify everyone at the same time, and this phase-in of various functions being electrified will have to be determined and planned carefully. The risk of not working this out is high – the greatest being continually being held hostage by the coal-fired power capacities and unable to shut them down to green the grid because power demand is climbing faster than we can build the grid and renewable capacities.
Gas is a transition fuel for precisely this reason; and it can play its role in the transition in two ways. First, it continues to supply energy to industries that need heat, delaying their need to electrify and hence keeping power demand at bay. Second, it can provide peaking power and supplement or displace coal-fired power in baseload, playing a critical role in taking the most carbon-intensive power source off the grid. Yet this brilliant idea keeps getting drowned out by the fear that once the gas industry is entrenched, it won’t go away. The economic lifespan of combined cycle gas-fired power plants or open cycle ones is about 25 years though their operational life can be extended. This means that they can be introduced immediately and fired up to replace coal-fired power plants and the tail end of their economic life can be more for peaking uses to stabilize the variable renewable energy, deferring investment in batteries that have significant lifecycle carbon emissions themselves.
The earlier we cut coal, the better; by allowing gas-fired power generation, we also defer the need to scale up our network capacity quickly when the electrification drive advances. These actions can mutually reinforce each other and allow battery, wind, and solar capacities to enter the system gradually alongside network upgrades. We observe how energy cost on consumers have increased while trying to green the grid (levellised cost of electricity from solar and wind is not a strong measure given that they are not produced when needed); trying to force the electrification is not going to make things better. Coupled with the strong anti-gas sentiments would only mean costs will keep going up.
What happens in economics when technological innovation happens? There’s a bit of dilemma between technological progress and economics because technology needs to progress to a stage when it upend the economics of an established technology – yet the incumbent is often enjoying scale economies as well as other effects such as network economies that can make it incredibly difficult for the new comer even if it is superior to existing technology at the scale that the incumbent operates.
In the Innovators’ Dilemma, that was being described and the strategy as well as the market approach is always for the new technology to chip away at the market of the incumbent technology by being appealing enough to a small group in the market to help it grow its scale and challenge the incumbent on more fronts gradually. Can the new technologies that we are trying to cross over towards make their way through this path in order to break the dominance of the incumbent technologies?
They probably won’t be able to move fast enough. And that is probably the justification for government to intervene and encourage developments. Yet governments do not want to be seen as favouring particular technologies. There is also a concern about creating inefficiencies in the market by distorting prices or forcing the taxpayers to shoulder the wrong costs.
Yet in reality, for the world to create a better future, there’s no real ways around it. The modern world was not built by shielding taxpayers from the wrong technological investments nor from carefully betting on the right technologies to take off. The complex problems around climate issues today are not so different from the public infrastructure challenges that people faced in the time before government had the kind of powers they have today. They are more complex, and we probably need more talented people working on them, both in the private sector as well as in government. In fact more so in government than ever.
The challenge remains the cost-benefit paradigms and all the free-market type principles to government and what intervention should be like. Without more mission-oriented policy-making principles and a system that is properly leveraging talents and passion, it will be difficult for governments around the world to assume the kind of role and leadership it needs to lead the transition.
We moved to Sydney earlier this year and one of the main highways that the buses move on to get to our place in the suburbs is Parramatta Road. It was a highway leading into the western suburbs but now it is just a road – a relatively narrow one for the heavy traffic that goes through it.
I recall one morning when I walked along the road to get to the bus stop that gets me a bus to the city. There were heavy trucks going down the road, with large SUVs and smaller passenger vehicles as well. I didn’t recall tailpipe emissions bothering me that much back in Singapore – perhaps only the heat that the cars were emitting then. But I noticed how much the tailpipe emissions were stinking up the air even in Sydney where it was less humid than in Singapore and smells tend not to linger or stay strong in the air.
It did make me wonder what the roads would be like without those tailpipe emissions. And that’s probably the dream of those EV companies and the policymakers who are trying to push for more EVs on the roads. Singapore could have done that way earlier; given our ability to manage the vehicle population through COE. Moreover, Singapore already has one of the highest taxes on vehicles in the world. This means the population was ready to shell out the kind of money that an EV would cost.
It is a fine balance to strike given that there’s a lot more consideration around the readiness of our electricity network infrastructure to develop the charging capacities needed. There’s a lot of thinking around whether our vehicle refueling infrastructure is going to be disrupted – and how we can manage those disruptions. Sometimes we just want the transition to happen immediately and for all of us to gain access to the latest technology at reasonable costs. Singapore has done a good job juggling these difficulties and we can do more to explain the linkages between systems to allow us to pinpoint and put pressure on the bottlenecks.