The monolithic system

What if the sun could give us all our power and energy, to drive everything we need to power our economies, perform our activities and live life? Or what if we can afford everything that we ever want and need? What if money can buy us everything? What if this one thing can solve all your problems?

If all that hypothetical questioning sounds like a bunch of marketing crap or storytelling, they are actually fantastic devices that somehow appeals so much to our psyche. But they can simultaneously be truth with caveats and also complete bullshit.

In case you are curious, I provide the solutions:

  • The sun does power a lot of things and is capable of providing sufficient energy for all of our activities and more but capturing it and channeling them properly is had.
  • We, as a collective earth, already is able to afford everything we produce and will be able to satisfy all of our needs – wants on the other hand are completely manufactured by ourselves and can be managed.
  • Money can buy us everything that can be bought (or sold).
  • One thing that can solve all your problems is a mental reframe to see them not as problems but challenges to help you grow.

There is always some kind of rhetoric to get you out of those conundrum but doesn’t really address the actual psychological appeal of those questions. The thing is that we naturally gravitate towards some kind of monolithic system or idea where we want a single solution or something that becomes a common denominator for everything else. Money comes close to becoming that. Yet that has probably demonstrated that such a system do not actually deliver what you think it would.

Likewise, the market economy and market system isn’t going to be the one that delivers us all from the problems around energy, climate change, innovations and poverty elimination. The market system needs to be rightly placed for what it is good for just as we should see wind and solar power in their place within the energy system rather than expecting them to deliver all our needs. Even oil and gas was not able to power all of our world’s energy needs even if they came close to that. Monolithic systems reduces resilience even if they provide scale economies.

Mission of energy transition

The market has a role to play in the energy transition but the market is not responsible for the transition. Technological improvements and our sense of purpose or mission does not come from the market – they are exogenous inputs. What is challenging about the market is that it does have a life of its own and there are always entrenched interests pushing against the direction of the mission that the world is on. It is not just about gaining buy-in to the mission but unraveling the interests vested in it.

That is a serious conundrum especially when we need to transition fast. The bigger the vessel, the harder it is to steer and change directions. So it is with the market economy. The most vested the market is with the status quo, the greater the reach of the tentacles of the market through the system across areas of life, the harder it is for change to happen. Or at least directed, meaningful change.

It is probably time to recognise that the market can help drive the demand for greener fuels and renewable energy if the incentives are put right. It is also critical to recognise that the economics around change can be arbitrary and a snapshot in time. Cracking the puzzle is not just about performing a cost-benefit analysis and saying whether to proceed with this or not. It is about identifying the pain-points, challenging the status quo, re-jigging incentives and rallying the champions.

We have done that before, with ushering more peace, with managing overpopulation, with feeding hunger, dealing with poverty. We can deal with the challenge of climate change and the transition of our economy. If we make it our mission to do so, rather than to wait for the market.

Biofuels vs E-fuels

I wrote about the conversation I had around biofuels and e-fuels that are produced through power-to-fuel approaches. They have rather different chemical pathways, costs and constraints. I’d really like to see someone consider the resource intensity of these different approaches. The challenge for most studies is that they consider biofuels from a standpoint of resource potential as though the agriculture activities are inert. Of course there’s the whole question of whether land should be used for cultivation of food or energy. I won’t get into that.

But I’d be curious to see if people who can organise the supply chain across the land, the supply of food alongside the supply of feedstock towards the bioenergy plants had done their analysis on resource intensity. A good comparison of the resource intensity from the water-intensity, output logistics standpoint would be really good. It doesn’t have to be a full-fledged lifecycle assessment – back of envelope calculation would be helpful.

There is a view that bioresources are limited by the amount of feedstocks available. There is only this much used cooking oils (UCO) that you can convert to hydrotreated vegetable oils (HVOs) or into biojet fuel (typically via the Hydrotreated Esters and Fatty Acids (HEFA) pathway). And that power-to-liquid is theoretically not limited in terms of resource potential. That is not exactly true because we are still limited in our green options for power generation and green power itself can eat into resources required by other sectors. The conversion process to fuel also requires carbon dioxide feedstock of suitable concentration as well as pure water to be electrolysed to produce hydrogen.

It’s strange to think that we can have unlimited power or that we can easily power the world – remember those times when people actually calculated the amount of solar panels and space on land that is needed to power all the earth? The investment to be made in terms of building lines to distribute power, and the factories to take that power and convert them into the fuel needed would multiply the complexity problem of supplying the world’s energy needs.

Sunsetting infrastructure

At some point in my career I got involved with projects with utilities in Australia. First with electricity distribution networks, then with gas utilities as well. They are all energy networks or utilities because my role as an energy transition consultant is to help players in the economy to navigate the challenges and struggles around our transforming energy landscape. They are struggles that the players and our economy must go through in order to emerge more resilient and climate-relevant.

Electricity networks are seen as important for the energy transition – the drive to decarbonise the energy system – so much so that The Economist ran a cover in April this year that shows a man hugging a transmission tower and the cover text reads “Hug Pylons Not Trees“.

Gas networks and pipelines are on the other end of the spectrum. There’s a lot of concerns around what is going to happen and the expectations of a death spiral. Activists campaigning against the gas networks can sometimes claim that they should be written off completely while contradicting themselves that the assets should not be allowed to depreciate quickly given they still have some operating life or runway. There is a role for gas networks to actually consider the challenging question of getting renewable gas into their network and the struggle has to do perhaps with the question of which gas. Would it be hydrogen, or biomethane, or what? And on the other hand, will they need to transport carbon dioxide? Perhaps captured ones from the industry? What role can the pipelines or network play?

If we keep thinking about molecules and figuring out which molecules, we’ll be somewhat stuck. The trick it seems, is to consider potentially taking the lead. It is still fascinating that Jemena actually took the lead to initiate the Malabar biomethane injection project and saw through it to the recent operation with the first biomethane injection into a distribution network in Australia. Biomethane in most cases is the straight-forward solution – one that is tricky to pull off but can be handled just from supply-side as the end-use equipment will not have to switch from the ones that already use natural gas. Therefore, it is the logical choice for gas networks to start taking the lead on. Perhaps in the next two to three years, it would soon be a no-brainer. But for now, we do what we can to further accelerate the transition.

Small firm in energy transition

The energy transition exposes the weakness of the current energy system of the world. It reveals how much we are reliant on a few resources to draw our energy to power the economy despite how dispersed and distributed energy resources are.

Take for example a rural area in Indonesia, where there are small farms and villages – and they are relying on diesel or kerosene refined and fetched from some far flung areas in order to power their generators or farm equipment. All the while just sitting beside heaps of bioenergy resources that are seen as waste.

The emphasis on low-carbon economy helps us recognise that we may have to start shortening our supply chains and reducing its complexity if we want to decarbonise our economies. Part of this has to do with how stuck we are between the CAPEX and OPEX distribution of the manner we consume energy. By consuming fossil fuels, we shift the burden of costs mostly to the OPEX since equipment are mostly standardised and so they are cheaper to procure and use while we adopt the long supply chains needed to achieve the delivery of fossil fuels on regular basis.

If we were to shift to shorter supply chains where the distributed energy resources were consumed instead, there might be more local equipment needed, the CAPEX might increase. But OPEX may actually decrease because now you’re saving on storage or disposal costs of some of the feedstock that might go into making the fuel you need.

If the world is to develop shorter supply chains, it will need more small firms. And governments all around the world needs to know better how to encourage, support and empower small firms to rise up to the challenge. We need local firms who are familiar with the local constraints, context and needs. They need to be upskilled technically to rise up to the challenge and generate solutions.

This mode of development is vastly different from the old school model of having a big multi-national firm come into a less developed location to help ‘develop’ it by reshaping local demands. Aside from how much this harks back to colonialism, it is creating long supply chains which seem to create more jobs but is not doing much for the climate and environment.

Hydrogen ecosystem II

When I first penned the blog post on hydrogen ecosystem, I had a couple of ill-fitting ideas that I thought could come together but I did not successfully pull them together beyond putting them in a single blog post. What I really meant to say is that the government will need to do more work understanding and studying the nuances of the ecosystem and industrial value chain that makes sense for green hydrogen and then perhaps take action to ease the struggles of the market in developing projects.

The thing about green hydrogen is that it is something that requires quite a fair amount of new infrastructure. And the situation is uncertain because governments are thinking that maybe electrification will be more dominant and want to avoid investing in white elephants. Or they think that it is all a zero-sum game due to budget and resource constraints and that investing into transmission and distribution which meant favouring electrification would naturally be inconsistent with investing into more gas infrastructure.

In reality however, green hydrogen is made from renewable energy and hence the alleviation of electricity grid issues that foster more wind and solar can also support the development of a green hydrogen sector. The key here again is that the government needs to have better knowledge of how different parts of the value chain works and the value they are contributing.

Only in appreciating that, the governments can make the right moves.

What would a net zero business in your industry look like?

We spend a lot of time thinking about emission reduction. And it is all based on considering the existing state of affairs and how to move ahead from here. So we often consider how a process can be optimised to use less energy, or to use alternative materials. So a decarbonisation roadmap plays an important role in considering an existing business and how carbon emissions can be gradually eliminated from the workings of the business to transit it towards a low-carbon economy.

But just as important is how we can envision a new business to perform exactly the functions of an existing business but with zero carbon emissions. It is no longer about mapping or developing emissions baselines but rethinking how the same process can be achieved without emitting as much carbon. It is rethinking processes altogether. Heck, it might even involve rethinking products.

Major oil & gas companies are now refashioning themselves as provider of energy, competing with their customers who are power generators. Or they can think of continuing to supply the electricity generation players by going into mining and extracting of minerals and metals that are needed for wind turbines and solar panels. Or they could reconsider that they are actually logistics players ferrying molecules around and look into dealing more with chemicals transport. They could even consider themselves producers or inventors of new materials.

This exercise can be repeated for other industries and we could potentially have very interesting outcomes.

Subsidies and fundamentals

Huge amounts of subsidies goes into fuel and energy. The companies are not necessarily being the ones subsidised to produce the fuel but rather, domestic markets of net exporters tend to be protected somewhat from international energy prices through subsidies. The notion is to help maintain internal price stability and hence cope with cost of living.

Australia is one of the few markets who are net exporters of natural gas for example and yet do not really “shield” its domestic market from international price impacts. The result is that the recent price spike in natural gas had Australians screaming in pain and for perhaps the first times in decades, businesses and households are seriously considering disconnecting from the grid and electrifying.

But there can be a middle ground. Subsidies can exist for these energy exporters to protect their domestic users given that these exporters stand to gain when the energy price increase. How can they share these windfall with their own economy and the users in local market? The government can subsidise users but make the subsidy transparent. This way, households are not paying the full prices and they are also given information about how much the government is helping to make them affordable. At the same time, it becomes more politically acceptable to pull back on such subsidies for those heavy users who are higher on income brackets and can afford it.

For far too long, we shield the markets from the proper price signals and artificially create false sense of affordability by subsidies, we reduce the resilience of our economies and contribute further to wastage and carbon emissions. Making subsidies transparent is a great first step, towards removing this political gridlock around domestic energy tariffs.

Moving solar around

You might have seen solar panels ground-mounting on vacant land in Singapore. Today I was on a cab when the driver told me about this and thought it is such a waste of land in Singapore.

So I explained the idea that our government agencies had and the tender they designed. The projects are actually to maximise the use of land rather than waste them. In Singapore, there are plots which are left vacant for future development – they may not be empty for the full period of a solar farm, but at any one time in the island of Singapore, there should be enough space to hold a certain amount of ground-mounted solar. So the plan is to move the panels around to a vacant lot once an existing solar farm land is needed for development.

Such a model seems common sensical but requires a great deal of coordination and detailed thinking. But in the grand scheme of trying to produce more green electricity for our island state, this is not exactly a great solution. And this is an example of the challenge that Singapore faces when it comes to being innovative and scaling solutions. We have requirement for unique solutions that serves us well but probably no one else – nor are we able to easily adapt our solutions to other places.

Not sure who else would want to be moving their solar panels around.

Primitive technology

Had a chat with a friend who used to be in the oil & gas industry; well at least along the value chain. He was also a bit on the old school side of things and he calls solar PV technology primitive because compared to the gas turbines whose efficiency is 60% when using combined cycle, the efficiency of converting solar energy into electricity is only 15-20%.

I was a bit surprised at that idea given that inputs in terms of the energy from the sun is free whereas you might need to calculate the energy cost from the drilling, piping, even liquefaction and then gasification of gas. Nevertheless, the point is that turbine technology has been widely adopted and used for many more decades than the solar panels. So a lot more money, time, resources have been invested into that those technology compared to renewables. That is simply fact.

Yet if you consider which technology has more room for progress and can move us to a future that we want to live in, the answer is just as clear. The problem again, with the economic analysis undertaken is that they are all based on individuals considering Ceteris Paribus everywhere else. The energy transition, decarbonisation is more than just that an individual decision and it was never meant to be worthwhile done alone. It was something to be coordinated, actions taken together. Which is why we cannot allow all of these technologies like solar, wind, EVs, hydrogen to be as primitive as they are.