All about energy transition

I’ve been fighting against the prevailing culture for the past decade of my career. And for those who blame things on culture and act like it cannot be changed, they are being delusional. I have a few examples to show:

  • How did we get from flagging for a cab on the street to punching our mobile phone screens to hail a cab?
  • How did we get from ‘solar power’ is too inefficient and there is not enough space in Singapore to targeting a 2GWp solar by 2030?
  • How did we get from being in kampongs where we helped each other and lived for generations in a house to thinking that our financial lives depend on getting BTO, then selling it after MOP and then upgrading non-stop over our adulthood?

While it takes time, culture can be changed. It also takes identifying some loose bricks in the existing edifice to overhaul the structure of our prevailing culture. Energy transition is one tough one to crack, but that said, our region in Southeast Asia has already moved quite a bit from the days of coal-fired power generation. Yes there was a bit of attempts to catch on with the hype around hydrogen but the dollars and sense prevailed at least for now.

So I’ve been toying with the idea of doing a lot more content to teach all of us about energy transition and to be able to learn together. There is a whole lot of de-stigmatising, trying things out, and unlearning our previous biases to be able to move the culture a bit and accelerate the transition. There’s a question of format, level of engagement, how to manage and nurture a community and so on. I guess I’ll have to dive in head first.

Rethinking business moats

Popularised by Warren Buffett, the idea of business moats is simply some kind of persistence or stickiness in demand that businesses have, which can keep them going. Basically it is really anything that helps to reduce competition to a business. This is important in the real world though we tend to celebrate competition in economics. Business moats are actually necessary for innovation, and avoiding a race to the bottom.

Moats are largely about maintenance of a profit margin. The stronger the moat, the higher the margin would be but having a moat itself makes a lot of difference. In fact, we tend to worry in economics about moats because we think it creates high margins. That’s not always true. You could have low margins as a moat itself – because being able to keep your costs low would keep competitors at bay. The point of moats is more about the persistence of the margin.

The most significant problem with competition is that you are in a dynamic environment that keeps you on your toes. Now you may think that is a good thing. But if we keep having to compete with competitors who are just diverting your customers easily through one-off gimmicks and popping up in different places, dislodging your margins here and there, it is not going to make a significant dent in your profits, but it certainly takes up your attention and ability to consider longer-term growth and innovation.

It is such long-term thinking that a business moat creates, which can support the maturing of a system. Yes, other institutional factors contribute to the growth and development of markets. But pure ‘perfect competition’ in the manner it is traditionally thought isn’t one of them. Many developed countries and markets have that sort of dynamism and competition. Just go to a weekday market in a mid-sized town in Africa. But that in itself does not produce the sort of progress that capitalism is touted to produce.

What underlies the success of market capitalism is ultimately the ability not just to accumulate capital but to be freed of that savage competition to engage in more medium to long-term strategic competition. And that is enabled by business moats.

Artificial Intelligence

I realise I’ve never written on artificial intelligence. GenAI swept the world quite a bit over the past 2 years and of course, the consciousness of it in the market since ChatGPT was made available for public use had driven Nvidia’s stocks up insanely.

I had realised that since I’ve got a collection of writings in the public domain from since 2009, it would not be hard for me to train an LLM to be able to almost think and write like me at least to the extent of views, ideas and information I have expressed.

The truth is I’ve somehow avoided using AI to do my work; rather, I’ve been using it more to gather and synthesize information, help me identify blindspots and figure out perspectives I might have missed. I know that what we have observed in the publicly available tools is just displaying a fraction of their potential and capability but I feel that ultimately, we are still hitting back at the same constraints that holds us back as humans. Resource.

AI continues to suck up computing power, materials and energy in order to work. This is almost silly to the extent that we are feeding machines copious amount of energy in order to produce output that pale in comparison with a human being. ‘Biological energy’ so to speak, is far superior and we already have the human brain that allows all of us to perform at a far higher and more meaningful level. Of course there are lots of ethical and safety issues confronting us as we develop AI further, and I’m not decided whether we should necessarily stop the developments – all I can say is that we are getting distracted by AI.

We are embarking on an almost insane hype in the market for AI while ignoring the greater problem that confronts mankind today – climate change. And we ignore it at our peril. AI, like the many other engineered geopolitical crises, are chipping away at our attention, energies and resources to deal with the things that matters much more.

I really believe we can do so much better with the struggles and challenges in this world if we had not been distracted by these things. I have no doubt AI is going to be important and influential, but along with a lot of other innovations that have radically changed our lives, it may only serve to exacerbate problems that are still not well appreciated by us, while taking away resources to solve the problems that are apparent today.

Culture & Consulting

Having worked in consulting across cultures, I have begun to recognise some cultural behaviours when buying consulting across different countries and the attitudes towards consultants. Having advisors is nothing new; the monarchs of ancient times have had advisors to support them for as long as they existed. These advisors offered more than just advice, insights or knowledge that leaders did not possess (or did not think they possessed).

They offered assurances when it was scarce. Soothsaying, contrary to what people might think, actually means telling the truth; with ‘sooth’ being an old English term that meant truth, as opposed to ‘soothe’, which means to calm. And the advisors also provided perspectives that during times of wiser monarchs, could contradict the conventional wisdom or call out the folly of the leaders.

So if we distil it down to the value that consultants provide today:

  1. Knowledge of what may not be known to the client: this is when consultants are selling their expertise, and familiarity with a topic area that clients are not familiar with
  2. Assurance of a particular course of action, decision, or information: this is when the client needs something verified, checked, validated and confirmed. The confidence and conviction of the advisor matter here as well, compared to those who hide behind jargon and ‘expert lingo’.
  3. Sparing partner or challenger to ideas: consultants can be valued in bringing new perspectives, especially an outside-in view of things thereby co-creating more valuable solutions or decisions with the client.

I begin to recognise that Asian firms especially with rather paternalistic leadership tend not to use consultants the way the West use them. So for example, when it comes to knowledge, the Western clients may appreciate specific subject matter expertise that comes through years of experience and in-depth research. In contrast, Eastern clients may value knowledge of implicit/unwritten local rules and norms rather than expertise in a more technical subject. The more institutionalisable the knowledge set is, the less likely an Eastern client would appreciate it as worth paying for.

Western clients see assurances from consultants as important while Eastern clients prefer to take the risks of not having check through things by themselves. This might have something to do with the way trust is formed. In Asian societies where getting things verified can be read as a sign of mistrust, it is challenging to value such independent checks and perspectives. The very deed of using independent validation can almost be an insult.

Finally, when it comes to having a sparing partner, the typical harmony-loving, and conflict-avoidant Asian culture would really struggle with the idea of paying someone to challenge you. In fact, leaders might instead assert the power of their wealth/influence over people so that they would not be questioned.

In this sense, Asian cultures tend towards getting advisors who can provide knowledge that is undocumented and unavailable in the public domain, and are often independent individuals with the specific gifts of being able to reveal ‘truth’ to the client. They also prefer that the knowledge advisors gain about the client cannot be easily disseminated. And as far as possible, they only care about knowledge that cannot be institutionalised.

This means that it is incredibly challenging for most professional, western-chain consultants to survive solely from serving a pool of Asian clients. If anything, they usually have to ‘survive’ off the big multi-nationals who are growing into new, and perhaps opaque markets, or needing more capacity support. In other words, consulting has grown out of an increasingly international market, yet not overly uncertain because surely some stability is necessary for consultants to be deemed to have accumulated enough lessons and experience to share.

Random musings as I continue to build up my knowledge and capability of managing a consulting practice.

Problem-solving or answer-finding

I am a Singaporean. And one aspect about Singapore highlighted by many stories of its growth and early leaders is the notion of pragmatism. Yet I feel that this notion probably has been overplayed.

Pragmatism is used to suggest that the ends justify the means. Now within the context of school, it could mean that you can get your grades by rote memorisation as opposed to genuine learning. Or that you could simply find the right answer to copy than to solve a problem yourself on an assignment.

Same goes for the worker at work – just find the answer, don’t bother solving the problem. This may mean finding out how it was done before; or to figure out what others who had the same problem was doing. One could argue those are problem-solving heuristics. Maybe. But I call those “answer-finding”.

As a consultant, I cannot help but recall clients who are asking, “but have you done this same thing before with another client or somewhere else?” This is answer-finding, not problem-solving.

The Singapore today needs trail-blazers and problem-solvers; as it always had. But decades of overemphasizing pragmatism means we prefer to pay for answers than purchase problem-solving capacity. We desperately need to shift this culture and move towards real problem-solving than answer-finding.

Bearing the cost of transition

Some interesting announcements and updates were coming out of Ecosperity last week. Most of them oriented around financing of the transition. This is an important topic considering that a lot of our existing economic system is locked into high carbon intensity systems because of financial incentives. Being able to change the incentives can help adoption of more emission-reduction measures.

Transition credits

Launched in 2023, a coalition of players were studying the use and deployment of transition credits. Verra also started working on a proper methodology to account for the carbon emission reductions from transition; and they launched it last week. Since the initial MAS announcement, the Acen Coal-fired power plant in the Philippines have become a candidate for a project that will issue transition credits in exchange for shortening the project’s tenure. And Mitsubishi also announced joining the team of firms taking a stake in the consortium that will generate the transition credits. The idea is that the consortium could then sell off the transition credits to players in Singapore who can then offset the carbon taxes; and there is hope to do the same for Japan.

I believe there is interest for these players to also participate in developing more renewable energy projects in the Philippines to help make up for the shortfall of power generation. After all, the article linked above quoted Rockerfeller Foundation that the shortfall will require “1,000MW of solar, 250MW of wind, and 1,000MW of battery energy storage”. Not sure if it comes as a surprise to all, but because of resource availability, solar and wind farms are not ‘always-on’. They only generate a fraction of their nameplate capacities most of the time, which means a lot more capacities must be built to produce the same amount of gross energy. Energy storage is needed to help time-shift the energy to when required.

WEF-GenZero aviation initiative

Launched as ‘Green Fuel Forward’ – it is a capacity-building initiative that is aimed at drawing in airlines, refiners, logistics companies, banks and others. I think the idea of building up capacity to deal with the entire SAF ecosystem is useful. Aviation decarbonisation over the next few decades disproportionately depends on SAF. It is good that the global aviation industry have more or less settled on this particular decarbonisation pathway and is developing various tools to be able to adopt it.

More than just using a different fuel, it involves getting customers to share in the higher cost of the fuel. How to do so is the issue; and all the airlines are afraid of the ticket pricing affecting their competitive position. Different approaches to distributing the emission reduction costs have been mooted: (1) some like the idea of a corporate decarbonisation programme where partners are gathered together and somehow agree to some formula to share the cost of the low-carbon fuel premium; (2) others think we could convert the emission reductions into some kind of credits to be sold to freighters or passengers who are on board those flights. Those methods involve using airlines as the market-maker for emissions reduction.

The customers of airlines especially the corporate players will need to determine their strategy when it comes to flight carbon emission abatement, as well as the budget they can allot to it. For now, corporate probably have some kind of trip budget – they might have to scale it down based on the SAF prices they are expecting. The airlines themselves will have to develop their own strategy of allocating the cost of SAF to passengers or corporate customers. And of course they can then issue or bundle the SAF-credits (SAF-C) accordingly.

As stated in the ST article on this initiative, each SAF-C means a reduction of 2.5-2.8 tonnes of carbon emissions. Assuming that each SAF-C is priced exactly equals to the premium that airlines pay for SAF above their conventional jet fuel, you’re looking at about US$1000-1,600 for each SAF-C. Now in comparison, a typical carbon credit (representing 1 tonne of carbon dioxide abatement) out in the market is selling at around US$3-4; or if it’s CORSIA-eligible, maybe US$20? So corporates are going to have quite some difficulty working out what is worth paying for SAF-C if you were supposing there was going to be some kind of market and price-discovery for those credits. Does it mean the airlines will have to pass on the rest of the cost shortfall to other customers? Then why do only the SAF-C buyers get to claim the reductions?

A lot of capacity-building will be needed and a proper vision for the workings of the ecosystem worked out.

Singapore government’s clean energy fund

There was yet another announcement about US$500m fund that Singapore government is going to deploy for green projects in the region, as part of the new ‘office’ that MAS is going to set up (named FAST-P). That’s actually going to be really interesting though the news was very scarce on details. I suppose they just wanted to announce some parameters they have decided during Ecosperity week while many other things are still being worked on.

We know there will be 3 pillars: (1) accelerating the energy transition away from fossil fuels to clean energy, (2) ramping up green investments, and (3) decarbonising emissions-intensive sectors like cement and steel production. I suppose the first pillar might relate to the transition credits mentioned earlier. The FAST-P office will probably be spending more efforts for (2) because that will be a lot more complex and require someone to drive or coordinate across different parties. It is not clear how (3) can be done when those sectors are likely the beneficiaries themselves either through energy efficiency investments or fuel/electricity substitution.

Having been involved in the set-up of Infrastructure Asia some 7 years ago, I am fully aware of how much effort behind the scenes just to get the resources together, not to mention the actual work of setting up the office. The work to be done by the office is really to identify the activities where it is worthwhile helping to reduce the riskiness of other financiers or funder. The metric would probably be more impact driven though for the sake of Singapore’s economy, it would be necessary to require anchoring some activities out of Singapore.


I think it’s really great to see how the various entities within the Singapore government or related organs (and I’m almost definitely stretching that by implying platforms like Genzero, which is part of Temasek, and some of those Singapore firms dealing in transition credits) are trying to tackle the issue of the transition, not just for Singapore but for the region.

Singapore energy transition II

Going beyond the energy system, there’s another important element to consider for Singapore as we are faced with a world in transition for the energy system. Singapore successfully built itself out to be a sort of energy hub even without domestic energy resources itself. In 2023, Singapore imported 145 Mtoe (million tonnes of oil equivalent) and exported 76 Mtoe. We basically re-exported more than what we consumed as a country for the entire year; and this is because we are largely importing petroleum products to be refined and then exported as more differentiated products. As an economy, Singapore earns the ‘cracking spreads’ from the refinery and drive the economy with that. Technically, it is the oil & gas companies running the refineries that earn that spread.

But more things happen after that, too. Because the refineries are left with a lot of heavy oils at the bottom of the barrel, we have lots of maritime fuels to spare, which coincides nicely with our large transhipment port facilities, together with our highly efficient port system that ensures a strong throughput. These advantages combine to allow Singapore to be the largest bunkering hub in the world. Bunkering refers to the refuelling of maritime fuel for the vessels calling at the port of Singapore. Storage terminals and other facilities will contribute to that.

With that scale, comes along a lot of other opportunities and economic activities that helps drive the economy. Vessels will call at the port to move the cargoes, which means that vessel services are required at the port. All sorts of cargo audit, verification services would be required. Engineering for vessel repair and overhaul could be added to the port city.

If we go back up stream to the refinery process, there are a lot of corresponding supply chain, derivative products that can all be based in Singapore, including some of the petrochemical production, wastewater treatment, waste oil recovery, centralised utilities services for the chemical plants. And it is not limited to manufacturing of course. There would have to be engineering firms, system integration firms, companies stocking up components for all of these plants including valves, flanges, and so on.

So while we can go on and on about the energy transition, when politicians and government think about their economies, there has to be some kind of rational and gradual shift rather than sudden evaporation of all of these activities. I don’t think we have clear solutions yet. For the past decade or so, government had left corporates to plan their own transitions, hoping to create friendly policies which will ‘help’ these corporates along their transition plan.

Now the issue is that the corporates tend to make big ambitious commitments when times are good only to realise they cannot be delivered as the resources they have is insufficient. Better yet, many of them set targets based on assumptions that simply does not hold in a low-carbon economy. So there is mostly empty talk, with no sticks or carrots to keep them in line. This is not just about discipline of executives and managers, but the ability of shareholders and other stakeholders to bear the costs of the changes necessary.

And then in 2020, Covid-19 struck and the government went full steam ahead with interventions, ushering an exceptional era where more expectations are piled on them to intervene directly and set regulations to push the world towards net zero. We all had hoped so through rounds and rounds of COP; but they really only started waking up a bit more during Covid-19. Yet the pandemic left us all weaker, with less resources to cope with the sustainability issues. When the funding and stimulus from the pandemic dries up, it seemed that a lot of plans for net zero had to take more of a backseat.

In Singapore we tried to ramp things up a bit more with the carbon taxes – despite how relaxed it actually is, there were still groans and moans – serious enough for the government to consider some kind of ‘rebates’. It seems to me that pricing carbon wasn’t really enough – just as setting up more tariffs was not going to cause manufacturing to magically re-shore back to America. There’s still a lot of coordination, capacity-building to do.

So let’s work together, and let’s devote some resources to consultants like my kind to help build that capacity and create that capability to moe into the next phase.

Singapore energy transition

As a strategy consultant devoted to the energy and climate transition, I spend a lot of time thinking about what is the pathway to transit our economy, and economic activities. A lot of the confusion and disorderliness arises out of poor understanding, misinformation and also uncertainties surrounding technology curves. Another reason is that we desperately want to get things right before we can make the move – this is a disease resulting from having too much information and failing to be strategic. Sometimes that is too late.

We have pretty much breached the threshold of 1.5 degree Celsius warming. That means we will have to decarbonise our economy while simultaneously deal with the consequences of climate changes within those temperature thresholds. We could fall into various positive feedback cycles that bodes ill for our climate systems. For example, we could be looking to manage the increased temperatures we experience by introducing more cooling, creating more comfortable indoor spaces that ends up throwing up more heat into the external environment, and also emitting more carbon dioxide in the process. I suspect it is already happening in Singapore.

I think an orderly and balanced transition isn’t about looking for the ultimate fuel or energy vector as our panacea. Even for Singapore, I dare say despite the National Hydrogen Strategy, it is very unlikely that we will be able to replicate our 95% natural gas strategy for our electricity system with something low-carbon. Unless it is biomethane but even then, there are doubts about the adequacy of supply. This means we will need to adopt different strategies.

I think for an energy system like Singapore, electrification may not always be a solution because adding more demand for green electricity to the grid would just make it harder to green our grid unless we manage to pull off an ASEAN power grid system where we can bring green power from anywhere in ASEAN and consume it in Singapore. Otherwise, if we assume a standalone grid system in Singapore that have projects offshore with dedicated connections to Singapore grid, it is better to focus on greening the existing electricity demand first, before looking at stepping up on electrification efforts (especially those where natural gas is currently being consumed).

The last thing we want to do is to electrify all our road transportation, only to have to import green hydrogen to be used to generate electricity to charge our electric vehicles. If that actually happens, then won’t it make more sense to put the green hydrogen directly into hydrogen-fueled vehicles instead? We want to minimise these inefficiencies and unnecessary round-trips. I think we need to consider first the anticipated electricity demand and the size of the system we will need over the next 2-3 decades, and make sure we are able to strike enough deals and do enough projects to meet that first.

Then separately, on the fuel systems side, the authorities will benefit from developing a clearer view of what our industries need. The industries are also transforming and trying to meet decarbonisation obligations, not just from the carbon tax introduced in Singapore but also pressure from other markets. By aggregating these needs and then looking at common infrastructure or aggregated deals that we can explore, we create more synergies and stickiness for the industries housed in Singapore. Whether it is renewable diesel, sustainable aviation fuel or biofuels for the maritime industry, these various fuels can be looked into more holistically for the demand pockets within Singapore to tackle them together.

We need to use the same attitude we have used for industry promotion and attraction to look at our energy system. Perhaps for the next leg of growth, the Energy Markets Authority will need to be parked under the Economic Development Board? Or at least they will have to be more coordinated and act almost as one agency in charting the needs and course ahead.

Primary energy fallacy

I think more people need to understand this concept that was attributed to Michael Liebriech, a thought-leader in the energy transition. Sam Hamels just wrote a pretty short explainer of its implications on Linkedin, which I encourage you all to read.

The assumptions are simple and does not address some of the other obstacles along the way but it is important that we should not be overwhelmed by the gross energy requirements in primary energy terms when we recognise that a lot of primary energy in the form of fuel are lost in the process of converting them into energy.

There are other obstacles along the way however, when considering that the most viable and economic renewable electricity sources are typically wind and solar, with substantial hydropower in the mix for certain geographies. These include:

  • Transmission and distribution infrastructure:
    • Hydropower tends to be farther away from demand centers so the distance of transmission makes the infrastructure expensive
    • Wind and solar tends to be intermittent which means that a lot more needs to be transmitted during the times they are produced while the infrastructure remains underutilized when they are not available
    • Overall capacity will need to be increased compared to the fossil energy regime
  • Energy storage infrastructure:
    • While hydropower dams could benefit from becoming pumped storage, other renewables such as wind and solar will require significant energy storage in the grid in order to reduce the need to overbuild (because of the point above)
    • Energy storage will also help provide the ancillary services for the electricity system as fossil plants retreat from the system (eg. reserve markets, frequency and voltage supports) while it becomes more volatile due to intermittent renewable electricity.
    • A lot more investment into stationary energy storage will be required. At least before the more lofty vehicle-to-grid concepts kick into place.
  • End-use system/equipment changes
    • To reap the benefits of the improved efficiency of an electricity based energy system, there will be a need to electrify more which means end-use equipment will need to be changed – assuming we’re trying to change a whole fleet of equipment with no regard to remaining lifespan, we are not properly using up our invested assets.
    • Typically, fuel-driven systems have longer lifespans than those driven by electricity – that may have to do with the fact that fuel-driven systems are more mechanical and have less delicate circuitry systems. Of course, that varies with specific use-case and appliance but what this means is that you might still face more frequent replacement, and the environmental cost of that might need to be carefully considered.
    • In some cases, the change in end-use equipment requires further infrastructure support. The most important example is electric vehicles, which need the support of a robust charging network – that must be supported by improved distribution networks in the grid.
    • Besides the grid, institutional improvements that properly allocate costs and reflect them to customers are necessary as well. Sometimes, it may make the transition harder as well. For example, the peak demand pricing of electricity markets drove a bakery in Queensland Australia to change their electric ovens to gas fired ones because they absolutely have to bake their breads in the early hours of the morning.

Now the reason I’m listing all these other obstacles is to challenge us to think through the solutions needed having convinced ourselves that we actually can work on getting enough supply into the system. There is still a lot of work to do to ensure this supply actually matches the real demand. Looking at gross energy terms is simply not enough, as evident from the primary energy fallacy itself.

SAF Pathways and value pockets

Today’s conventional wisdom around the Sustainable Aviation Fuel (SAF) market is that it will start with the HEFA pathway which converts oily waste compounds into jet fuel. The process is well established and economical. The challenge is aggregation of the feedstocks which takes the form either of used cooking oil and oily waste streams coming out of some vegetable oil production streams. They could also take virgin vegetable oil and oil from oilseeds to produce (but these tend to have a higher lifecycle emission associated with them as they are cultivated and will require fertiliser inputs and other resources).

The regulators and market expect that these feedstocks will be insufficient as the virgin oils should be reserved for food use and the waste-based feedstocks are limited. So then when the HEFA feedstocks supply goes down, prices of these feedstocks would move up towards the next SAF pathway. The popular contender after HEFA is the alcohol-to-jet (ATJ) pathway. They take bioethanol or methanol and turn them into jet fuel. This process is a bit more expensive, but because bioethanol is already being produced by various plants worldwide to supply provide for gasoline blending in countries with ethanol-blending mandate, it has a much more stable and ready market than used cooking oil.

Further technology pathways are expected to involve gasification where biomass is subjected to thermal processes that breaks down the material into constituent carbon, oxygen, hydrogen and nitrogen compounds, then reformed to make liquid fuels including jet fuel. These pathways are even more expensive, but their feedstock, which is pretty much any biomass, would be much more abundant.

So, the supply curve is expected to notch upward in discrete steps; once prices hit the threshold to unlock the next technology pathway, more feedstock will enter the picture and hence increase the supply of SAF available. This doesn’t mean that the earlier pathways will earn more margin, because the bottlenecks are the feedstocks; typically, the feedstock owners or aggregators tend to extract more of that value.

But this would mean that the prices of SAF should and can only rise as the mandate for more SAF and aviation decarbonisation becomes stricter and emission reduction targets become more ambitious. Now there is another transition to consider. That is a scenario where the chief driver of SAF adoption, regulations and blending would be decided by the market – but the outcome they are targeting would be based on proportion reduction of carbon emissions relative to conventional jet fuels.

Now of course, some from Oil & Gas players might think they can use carbon capture and storage to lower the fossil jet fuel intensity to meet the criteria. Yes to a certain limit; because the carbon dioxide emitted during the aircrafts’ journeys from fossil jet fuels will always been counted while the biofuel or synthetic fuel’s emissions will be zero (because they are short-cycle or biogenic carbon dioxide).

So I urge regulators and policy-makers; focus on the carbon intensity reduction targets, rather than volumetric blending targets.