There is some kind of rational order to the energy transition. It depends on the maturity of the system, the current technologies deployed, the infrastructure in place, and also our views on the technologies ahead. This order will not occur naturally, nor will the economics of it follow naturally. Instead, it is an approach that requires coordination across the energy system, regulatory framework, and the markets to ensure that order proceeds as it should. There is no single right answer, which means there can be some variation but by and large, there are clearly right directions to move forward on.
It is critical to sharply focus on the objective of decarbonisation and organise other matters around it first. Presently, most of the global discussions, and the market narratives are clouded by issues around cost concerns, job losses, stranded assets and lots of doom and gloom around those. Worrying about them is putting the cart before the horse because we need to properly envision a future before we decide whether the sacrifices are worth and how to deal with those secondary problems derived from them. After all, you don’t choose your destination based on the public transport time table.
If for example we want to look at the decarbonisation of power systems, there is first the displacement of fossil generation with wind and solar. So wind and solar must first be installed into the system and ‘traditional renewable power’ such as hydropower and even bioenergy boosted. As battery technologies are not rolling out as quickly, hydropower and even biogas plants can and should help with some of the smoothing of supply. Yet if they are not sufficient, batteries must be put into the system to enhance the reliability and reduce intermittency so that renewable power is able to displace fossil generation.
And only then, would the power system be able to start supporting electrification of other industries as a route to decarbonise. There is no point thinking that electrification is a route to decarbonisation if the power system itself is loaded with coal and gas plants, and increased demand is continually used to justify the continued fossil presence. And then only when the power system is properly decarbonised should we start considering and pushing for green hydrogen. Otherwise, having our renewable electricity capacities all caught up in green hydrogen production is definitely not a great idea for the industries looking at electrification to decarbonise – you’re pushing up the electricity cost on both sides, and then you end up complaining that green hydrogen is not cost-competitive.
If we believe that we want to pursue a route of hydrogen production that is based on highly efficient electrolysers then we may only be able to do so when batteries are really cheap. This is because highly efficient electrolysers can only have their costs justified through high utilisation. Yet renewable electricity is expensive when they are scarce which is probably the case for a system full of solar at night, so if you want to keep the electrolysers going 24/7, you need batteries to keep pushing electrons through them. Highly efficient electrolysers, combined with lots of batteries for maintaining high utilisation is a great formula for extremely expensive green hydrogen. Cheap but inefficient electrolysers might actually end up doing the work of pushing down cost of hydrogen earlier (see some ideas here).
Now all that only helps with the production cost of green hydrogen; there are other issues and cost barriers which needs to be overcome. More on them in my next post. But what I’m trying to show here is that there is a rational, orderly way to approach the problem of decarbonising our systems. And the way to consider it is not to load up the emissions problem with all of the other considerations upfront. Rather, we organise ourselves better by thinking first about the best route to decarbonise based on carbon intensity, then we identify the costs, figure out the trade-offs and see what is worth sacrificing.